Development of Sustainable High Performance Magnetic Materials for Exceptional Power Density Electric Drive Motors

Iver E. Anderson, Jun Cui, Matthew J. Kramer

Ames Laboratory June 11, 2019

Project ID: elt215

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: October 1, 2019
- End: September 30, 2022
- Percent complete: 10%

Budget

- Total project funding
 - \$1,350 K (Federal)
 - \$0 K (Cost share)
- Funding for FY 2019: \$450K

Barriers and targets

- Barriers addressed
 - Permanent magnet (PM) cost and heavy rare-earth (HRE) element scarcity and price volatility
 - Non-rare earth PM electric motor has low power density
- Targets
 - Exceptional drive motor power density (33 kW/l at \$6/kW with 8x reduction in volume)

Partners

- Oak Ridge National Laboratory
- National Renewable Energy Laboratory
- Sandia National Laboratory

Relevance

Objective

 Develop permanent magnetic (PM) materials and processes that conserve scarce rare earth (HRE) metals, but have suitable performance for electric motors with exceptionally high power density.

Impact

- Reduces IPM rotor magnet eddy current losses at increased frequency/RPM
- Improve interior permanent magnet (IPM) motor power density
- Maintain drive system cost-effectiveness and high efficiency

Milestones

Tasks #	Description		20	19		
1	Develop fine-grain RE permanent magnet with high coercivity at high temperature	1	2	3	4	Status
Yr1-Q1	Establish theoretical framework for fine-grain approach.					75%
Yr1-Q2	Identify processing challenges and solutions for producing fine- grain, high coercivity magnets.					90%
Yr1-Q3	Down select and evaluate processes for fine grain magnet production by powder-based approach.					
Yr1-Q4	Validate and initial testing of magnets identified through micro- magnetic modeling of bulk RE permanent magnets with heterogeneous and homogenous microstructures.					
2	Develop graded HRE-free magnet with high performance at high temperature	1	2	3	4	
Yr1-Q1	Establish theoretical framework for graded-magnet approach					60%
Yr1-Q2	Assess technology of graded magnets (alternative approaches for graded magnet processing) and scale-up feasibility.					50%
Yr1-Q3	Develop methods for achieving spatially varying composition architectures to maximize coercively where needed.					
Yr1-Q4	Validate and initial testing of architectures identified through micro-magnetic modeling					

Task 2.7 Develop fine-grain RE permanent magnet with high coercivity at high temperature

Challenge: Highly refined grain size RE-PM with magnetic & mechanical strength

- Dy in RE-PM for drive motors maintains high coercivity at high operating temperatures.
- Ultrafine grain non-Dy RE-PM also raises coercivity and stabilizes high temperature properties.

Challenges

- Difficult to produce and handle fine powder in manufacturing process
 - Additional milling time/intensity is required for finer powder
 - High flammability of the fine powder requires super low oxygen control, leads to extra cost
- Difficult to fabricate into bulk magnet
 - Increased surface area impedes grain alignment and promotes grain growth during sintering
- Deterioration of bulk mechanical properties
 - Residual surface oxides embrittle microstructure 5

Approach: Processing Ultrafine Grain Size RE-PM

- Investigate production of ultrafine powder/uniform composition
 - Feedstock: strip cast, planar-flow cast, melt spun (fine grain, low surface area)
 - Size Refinement: ball-mill (BM), cryo-mill (CM), jet-mill (JM), HD
- Surface oxidation protection
 - Minimal oxide growth (glove box processing) or alternative surface reaction
- Investigate processing of aligned, ultrafine grain bulk magnets
 - Loose powder aligned: die compact or CIP
 - Full density sintering: pressure-less or vacuum hot press
- Alternative novel processing approaches
 - Additions to stabilize grain size, metal bonding

Planned milestones and annual go/no-goes

2019

- Down select fine powder production methods
- Validate the mechanism of enhancing coercivity through fine grain approach

2020

Fabricate ultrafine grain bulk magnet

Accomplishments: Ultrafine Grain Size RE-PM

Magnet from blended powders obtains highest Hcj, but magnet from "finer" powder obtains a higher Br (kGs), alignment (Mr/Ms) and (BH)_{max} [more uniform size?] Highest Hcj probably from microstructure with finest average grain size.

Milling effects on morphology and size of Nd-Fe-B powder

Ball-milled (3h) to ~5 µm

Ball-milled (3h) to ~5 µm + cryo-milled (2h) to ~3 µm

- □ Cryo-milling for 2h reduced ball-milled powder size from ~5 µm to ~3 µm.
- ☐ Milling needs improvement (size reduction/uniformity); try jet milling. 8

Sintered magnet microstructures: grain size/boundary phases

- Magnet from 50/50 blend shows a smaller average grain size while magnets from 100% BM or BM+CM powders shows a larger average grain size, consistent with coercivity results.
- □ Blended powder seemed to produce magnets with most detectable g.b. oxides.

Test of cracking tendency with "clean" grain boundaries:

As-solidified grains of different sizes on ribbon X-section AFM images showing indents for 5mN load [Free side] Free side Free side 1µm 30x30 µm 30x30 µm 1µm Wheel side **Plastic** [Wheel side] 1 µm 300nm Wheel side surface rumpling. 1µm No signs of cracking in ultrafine grains, if "clean" 1mN indent interfaces. 5mN indent 10 500 nm

Wheel side

2.8 Develop graded HRE-free magnet with high performance at high temp.

Challenge: Design/produce graded HRE-free magnet with surface of high coercivity and core of high magnetic saturation.

- During IPM motor operation, only a minor portion of the bulk permanent magnets (adjacent to the rotor gap) experience high demagnetization field.
- In this concept, a portion of the IPM rotor magnets is "shielded" by a high coercivity magnet "cap" with high temperature stability, e.g., SmCo₅, and a high saturation magnet with less Hci, e.g. alnico 5-7, provides the required magnetic torque for the motor.

Challenges

- Demagnetization lines are nonlinear
 - The de-magnetization field distribution of a non-uniform high coercivity (shielded) magnet in realistic stator field needs to modeled in appropriate geometry.
- Assembly of two permanent magnets without air-gap requires
 - Compatible thermal-mechanical treatment during the bulk magnet fabrication process
 - Composite magnet processing method adaptable for both types.
 - Compatible CTE during operation.
 - Resistance to thermal fatigue.

Approach: Modeling and Processing Graded Magnets

- Conduct preliminary composite magnetic modeling of High H_{ci} magnet shell on High M_{sat} magnet over range of field strength.
- Investigate metallurgical compatibility for thermal-magnetic heat treatment processes and consolidation processing of possible magnet pairs.
- Perform geometry-corrected modeling of demagnetization lines with preliminary choice of High M_{sat}/High H_{ci} magnet types (alnico 5-7/SmCo₅)
- Assess technology prospects for graded magnets (alternative approaches for graded magnet processing) and scale-up feasibility.
- Develop methods for achieving spatially varying composition & architectures to maximize coercivity, as needed.
- Validation and initial tests of graded magnet architectures identified through micro-magnetic modeling

Planned milestones and annual go/no-goes

2019

- Determine architecture of the graded-magnets
- Investigate process compatibility for a model system (SmCo-AlNiCo)

2020

 Validate the graded magnet concept by fabricating and testing a model system.

Accomplishments: Preliminary Modeling of Graded Magnets

Completed preliminary simulation of demagnetization field distribution in interior permanent motor (IPM) during normal motor operation

- Exploring fundamental principles for predicting the effects of spatially varying grain size on magnetic and mechanical properties.
- Identifying trade-off between improved magnetic and physical properties (electrical resistivity and mechanical properties, e.g., fracture toughness).

Responses to Previous Year Reviewers' Comments

N/A (this is the first review).

Collaboration and Coordination

- Collaboration on motor designs after sharing of material thermo-mechanical properties.
- Cooperative modeling of geometry-corrected demagnetization lines of High M_{sat}/High H_{ci} magnet types.
- System level performance modeling.

Investigation of thermal mechanical properties of developed materials.

- Coordination of efforts of university partners who are actively engaged in permanent magnet development for associated motor designs.
- Cooperative development of composite permanent magnet designs.

Remaining Challenges and Barriers

- Select beneficial production of ultrafine powder/uniform composition.
 Feedstock by melt spinning (fine grain, low surface area)
 Size refinement by jet-mill with intense energy and controlled atmosphere Minimize oxide growth by glove box processing with surface reaction design
- Investigate improved processing to produce highly aligned, ultrafine grain bulk magnets.
 - Pulse magnet for loose powder alignment and die compact or CIP Utilize compact with improved alignment for full density sintering by either pressure-less (preferred) or vacuum hot press methods.
- Test temperature stability of resulting ultrafine grain magnets.
- Model geometry-corrected demagnetization lines with preliminary choice of High M_{sat}/High H_{ci} graded magnet types.
- Further investigate compatibility of magnet pairs for thermal-magnetic heat treatment and consolidation processing.

Proposed Future Research

Key Challenges

- Current SOA is high performance RE-PM alloy Nd-Dy-Fe-Co-B with reduced Dy level for drive motors with optimized design.
- If processing challenges overcome for ultrafine grain RE-PM without Dy, need to demonstrate advantage in alloy and processing cost to motivate motor redesign.
- Further sustainable PM alloy design with high performance may be achieved with graded magnets, but must have similar cost to ultrafine grain RE-PM.

Future work

- For ultrafine grain RE-PM magnets, should develop final shape processing to minimize material waste, only needing final grinding to dimensions.
- Develop new alloy to maximize ultrafine grain size retention during full density consolidation.
- For graded magnets, determine minimum layer thickness for High H_{ci} surface to conserve most valuable magnet component.

Summary

 Production of ultrafine grain size RE magnets was demonstrated with commercial HD feedstock of RE-rich (HRE-free) alloy.

> Highest coercivity from (presumed) most uniform fine grain size. Blending may have introduced additional oxide on grain boundaries.

 Improved ultrafine grain size RE-PMs are likely from crystallized melt spun ribbon of similar alloy previously developed with carbide additions to stabilize grain size.

Additional particulate refinement could come from jet-milling with strict atmosphere control.

Improved alignment also may be improved by refinement, especially with pulse magnet during compaction.

 Preliminary graded magnetic modeling of High H_{ci} magnet shell on High M_{sat} magnet core was conducted over range of field strength and encouraged this approach to magnet design.

Initial test of metallurgical compatibility for thermal-magnetic heat treatment of a possible magnet pair (SmCo₅/alnico 8) indicated that another choice was needed.

